
Predicting tongue shapes from a few landmark locations
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Abstract

We present a method for predicting the midsagittal tongue

contour from the locations of a few landmarks (metal pellets)

on the tongue surface, as used in articulatory databases such

as MOCHA and the Wisconsin XRDB. Our method learns a

mapping using ground-truth tongue contours derived from ul-

trasound data and drastically improves over spline interpolation.

We also determine the optimal locations of the landmarks, and

the number of landmarks required to achieve a desired predic-

tion error: 3–4 landmarks are enough to achieve 0.3–0.2 mm

error per point on the tongue.

Index Terms: ultrasound, midsagittal tongue contour, tongue

tracking, articulatory database

1. Introduction

We consider the problem of reconstructing the shape of the

tongue given the location of a few landmarks on its surface.

For example, two articulatory databases (Fig. 1), the Wiscon-

sin XRDB (using X-ray microbeam) [1] and MOCHA-TIMIT

(using EMA) [2] give the 2D locations of 3–4 metal pellets at-

tached to the tongue tip and dorsum (as well as the locations of

the lips and other articulators, and the acoustic wave). Given

the location of these pellets at a given time, what does the entire

tongue shape look like? In fact, are 3–4 pellets enough to char-

acterise the tongue shape accurately at all? The ability to derive

the full tongue shape from a few pellets would allow to animate

the tongue shape for visualisation purposes, and could be used

as an input to methods for articulatory speech synthesis and in-

version. It would also help to determine the optimal number

and placement of pellets during EMA or X-ray recording.

In this paper, we focus on reconstructing the midsagittal

contour of the tongue rather than its full 3D shape, because our

ultrasound data is limited to 2D images. However, our approach

extends to the 3D case. A simple reconstruction approach (that

we and others have used) is to fit a smooth contour (e.g. a cubic

or even piecewise linear spline) to the landmarks, justified by

the observation that the tongue body is continuous and reason-

ably smooth during speech. However, smoothness is not enough

to characterise the real behaviour of the tongue, which can dis-

play very complex shapes during normal speech. For exam-

ple, its midsagittal contour can show humps or valleys between

landmarks or bend significantly in the tip or root (Figs. 2 and 4);

and the tongue cannot go through the palate or teeth. It is possi-

ble to try to model the tongue shape by having a function with

many control parameters and to model compression against the

palate or teeth by assuming constant volume, as done in the

Baldi talking head [3]. However, setting these parameters is

difficult and time-consuming even for an expert, and even un-

Fig. 1. Location of pellets in two articulatory databases: XRDB

(left, 4 tongue pellets), MOCHA (right, 3 tongue pellets).

der the best settings the predicted shape may not look realistic

enough. A similar problem arises in computer animation of the

human body, where a combination of motion-capture and ma-

chine learning are able to reproduce realistic motion.

In this paper, we follow a machine learning approach,

where we estimate a nonlinear mapping from the landmark lo-

cations to the tongue contour using ultrasound data recorded for

a subject during normal continuous speech. With this ground

truth, estimating the optimal parameters can be done by numer-

ical minimisation of the reconstruction error, and we find that

the predicted tongue contours look very realistic. Our approach

is similar to that of [4], who considered inferring midsagittal

pharynx shapes from the tongue using MRI data but limited to

11 static vowels and using linear regression. In addition, we

can also estimate the optimal location of the landmarks on the

tongue, and the number of landmarks we need to achieve a given

error. Section 2 describes the data collection, section 3 the pre-

dictive model and section 4 the experimental results.

2. Data collection

In order to be able to map landmarks to a full tongue contour,

we need ground-truth data for tongue contours. Specifically, we

consider a dataset consisting (for a given speaker) of N con-

tours {yn}
N
n=1, where each contour y ∈ R

2P is a vector giving

the 2D coordinates of each of P points along the tongue. We

collected such a dataset from ultrasound recordings.

Tongue contour tracking from ultrasound Unlike EMA

and X-ray microbeam, ultrasound technology can image real-

time movement of the entire midsagittal tongue contour during

speech in a noninvasive and unobtrusive way. Other advantages,

such as high temporal resolution, portability and low cost make

it very appealing in speech research. Ultrasound has disadvan-

tages as well: the images contain speckle noise and unrelated
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Fig. 2. Typical ultrasound tongue images. Artifacts such as

noise, invisibility of tongue parts, bone shadows, sound reflec-

tion and interlacing video coding present difficulties for auto-

matic tongue contour tracking.

Fig. 3. Left: ultrasound machine used. Right: device to stabilise

the head (to reduce motion wrt the ultrasound probe).

edges; it does not image passive articulators, only the tongue;

and the only image area that is visible is between the thyroid

cartilage and the front of the mandible because of shadows; see

[9] for a guide on using ultrasound to analyse tongue motion.

(Recording ultrasound and EMA simultaneously is difficult due

to interference between the two channels, although such a dual-

channel database [6] is being investigated.)

Given a set of 2D ultrasound images of a tongue (Fig. 2

shows two sample images), our goal is to extract the tongue

contour (the lower edge of the highlighted strip) from each im-

age. Manual tracking of the tongue contours suffers from sev-

eral drawbacks well known in biomedical image analysis, in-

cluding user bias, user fatigue, and not being able to achieve

reproducible results. Also, it becomes infeasible for a large

number of ultrasound images. Therefore, it is crucial to have

an automated system for tongue movement analysis. However,

the noisy nature of ultrasound images makes it very difficult

to track tongue shapes reliably and automatically (see [5] for a

comprehensive survey on ultrasound image segmentation), and

this is compounded when dealing with multiple utterances and

speakers. Since in our study it was important to obtain high-

quality ground-truth contours, we adopted a semi-automatic ap-

proach: we used a state-of-the-art contour tracking algorithm,

which gave us a reasonable tongue contour at each frame, and

then we adjusted the contours manually if necessary. We used

the automatic tongue contour tracking software EdgeTrak [7].

Its algorithm is essentially based on the active contour algorithm

of [8], which iteratively minimises an energy function designed

to detect contours of the object in the image. We observed in

practice that the algorithm could get stuck at a local minimum

and lose track, hence the need for manual corrections.

As discussed, obtaining ground-truth tongue contours is ei-

ther unreliable (with automatic methods) or time-consuming

(with manual methods). Future work should address the issue

of adapting a model learned on a dataset (e.g. from one speaker)

to a different setting (e.g. a different speaker).

Tongue contour dataset Following the procedure described

above, we have created an ultrasound database at Queen Mar-

garet University and the University of Edinburgh. It contains

two speakers (one male, maaw0, and one female, feal0) with

different Scottish accents. Two data streams were recorded syn-

chronously for each speaker: acoustic waves (which we did

not use in this study) and ultrasound videos. The ultrasound

recorded the movements of the tongue in the midsagittal plane

at 100 Hz. Each speaker recorded a set of 20 British TIMIT

sentences designed to be phonetically balanced. In this study,

we use data from maaw0, consisting of two parts: one part con-

tains 800 image frames from one utterance (db1); the other part

contains 6 000 image frames from 10 utterances but recorded in

a separate session (db2).

Although the ultrasound probe is held against the chin while

recording, it is possible in principle that the chin and the probe

shift with respect to each other during recording. This would re-

quire normalising the contours wrt a fixed reference. However,

we found this unnecessary for two reasons: in a pilot exper-

iment, we compared the prediction results with normalisation

(by shifting the data to zero mean and a given orientation) and

without normalisation, and found little difference; in addition,

we used a device (Fig. 3) to stabilise the probe wrt the head.

Thus, the experiments described here used no normalisation.

3. Predictive model

We define the tongue reconstruction problem as follows. Of

the P points along the contour, we choose K (say, 3) to rep-

resent the landmarks, or pellets affixed to the tongue (call this

vector x ∈ R
2K ). We then want to predict all P points (or

rather, the remaining P − K) using a mapping f(x) = y that

we estimate from a training set. We represent f using a ra-

dial basis function (RBF) network [10]: f(x) = WΦ(x) with

weight matrix W of 2P × M and M Gaussian basis func-

tions φi(x) = exp
`

− 1
2
‖(x − µi)/σ‖2´

with centre µi and

width σ. The reason for choosing a RBF network is that, be-

sides being able to approximate many mappings accurately, it

also simplifies considerably our computations. We can fix the

RBF centres µi once and for all on the basis of the training set

of contours {yn}
N
n=1 (e.g. by vector quantisation) and estimate

W depending on the choice of landmarks x by solving a linear

least-squares problem (without local minima).

As interpolation method (not based on a training set), we

use a cubic B-spline (Matlab function spline).

4. Experimental results

RBF prediction vs. spline interpolation of the tongue contour

We trained a RBF network on database db1, with parameters

found by cross-validation (M = 110 basis functions fitted by

k–means with 10 random initialisations; σ = 20 mm). Fig. 4

compares in selected frames the true tongue contour and the

contours estimated by spline interpolation and by our RBF

prediction, given K = 3 fixed landmarks (representing 3 EMA

pellets). Fig. 4 also illustrates the rather complex shapes that

the tongue can adopt, with significant changes in curvature,

in particular when raising the tip. The contour predicted by
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Fig. 4. Selected frames comparing the true contour (cyan) and the contours estimated by the spline interpolation (green) and our RBF

prediction (red), for K = 3 landmarks (yellow dots). Frame 754 shows indicative 10 mm scale bars.

the RBF overlaps almost perfectly with the true contour, so

the latter is barely visible. The spline contour often deviates

significantly from the true one. For example, since the spline

behaves like an elastic bar, it is impossible for it to predict a

sharp valley or hump between two adjacent landmarks (frames

97, 205, 553). When the landmarks are aligned (e.g. frames

428, 754) the spline naturally adopts a straight line shape,

which is physically infeasible for the tongue, and different

indeed from the true contour. In all these situations the RBF

prediction works very well. The advantage of the prediction

based on a training set is largest when extrapolating beyond the

end landmarks, near the root or the tip of the tongue.

Optimal number and location of the landmarks In this ex-

periment, we used database db2. In order to determine the opti-

mal location of K landmarks, we would need to fit a predictor to

each of the
`

P
K

´

combinations (where our contours have P = 24
points). We limit the computational cost involved as follows.

(1) By using a RBF network with fixed basis function centres

and width, we only need to estimate the linear weights W for

each combination. (2) We ignore unreasonable arrangements of

landmarks by dividing the contour into K consecutive segments

and constraining each landmark to select points from one; for

example, for K = 3, landmarks 1, 2 and 3 can only select points

1–8, 9–16 and 17–24, respectively. This prevents landmarks

from being all very close, or very far from each other, which un-

doubtedly would lead to a much worse prediction. This resulted

in 145, 513, 1297, 2501 combinations for K = 2, 3, 4, 5, resp.

The number of combinations for K = 6 (4900+) or higher re-

quired too much computer time for this study. For each combi-

nation, we performed 5-fold cross-validation to choose the opti-

mal parameters and reported the averaged reconstruction errors.

The optimal parameters of the RBF network (M, σ) (number of

BFs and width in mm) were:

K K = 2 K = 3 K = 4 K = 5
(M, σ) (410, 19) (400, 13) (410, 19) (490, 19)

We report the root-mean-square error (RMSE) in mm for each

contour point i = 1, . . . , P : ( 1
N

PN
n=1 (y

(n)
i − ŷ

(n)
i )2)1/2 in

Fig. 5 (left), where n is the index of the contour in the dataset

(with N = 6 000 contours for db2), and yn and ŷn are the true

and reconstructed tongue contours, respectively. Fig. 5 (right)

reports the RMSE averaged over the P contour points.

Fig. 5 (left) shows that the prediction errors at each con-

tour point are roughly symmetric around the fixed landmarks,

with the lowest (zero) error at the landmarks themselves, and

the highest error approximately in the midpoint between land-

marks, or at the ends of the contour. The errors are largest at the

tip of the tongue, consistent with its movement being the most

complex. From Fig. 5 (right), using only 2 landmarks yields

an optimal error of 0.6 mm, while using 3 yields less than 0.3
mm and 4 yields 0.2 mm. Using more landmarks yields dimin-

ishing returns; it is also practically harder to attach that many

pellets to the tongue. The line labelled “worst” is actually not

much worse than the optimal, because we have ruled out pel-

let arrangements that would indeed yield a far larger error (e.g.

having all pellets next to each other).

For the spline interpolation, we predicted the contour y by

considering a uniform grid of P locations along the X axis

(with known Y values for K points) and applying to it the spline

function. Consistent with the previous section, the spline inter-

polation (Fig. 6) is always much worse (by an order of magni-

tude) than the RBF prediction, although its error improves as K
increases.

Fig. 7 shows the optimal location of the landmarks for

K = 2 to 5. The landmarks are roughly equidistant along

the tongue contour, but somewhat closer to each other near the

tongue tip, consistent with the fact that the tongue tip shows

more complex movements than the rest of the tongue. The end

landmarks are close to the contour ends (tip and back), but not

right at the ends. The scale bar allows to determine the posi-

tions in mm, and (after rescaling by the total tongue length) one

can determine the approximately optimal placement for a dif-

ferent speaker. The approximate locations of the 3 pellets that
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Fig. 5. Error (RMSE) incurred by the RBF prediction of the

tongue contour wrt the ground-truth contour. Left: RMSE (mm)

for each contour point (averaged over all contours in the dataset)

for different numbers K of landmarks, for the optimal landmark

placement. Right: RMSE (mm) for each contour (averaged over

all contours in the dataset and over all points in the contour), as

a function of the number of landmarks K, for: the worst place-

ment of the landmarks over the combinations we considered

(solid line), the average over all combinations (dashed), and the

optimal placement (dotted, corresponding to the left panel).
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Fig. 6. Like Fig. 5 but for the spline interpolation instead of the

RBF prediction. Note the different scale in the Y axis.

were used in the MOCHA database are quite close to the opti-

mal ones. From Fig. 5 we then estimate that the tongue contours

may be reconstructed from the 3 MOCHA pellets with an error

of around 0.3 mm at each point on the tongue contour. The fact

that the “worst” and “average” lines in Fig. 5 (right) increase

the error by only about 0.1 mm means that, if we cannot place

the landmarks optimally as given by Fig. 7, the following recipe

will yield near-optimal results: place two pellets 2 to 4 mm from

the tongue ends (tip and root, i.e., as far forward and backward

as possible), and place the remaining K − 2 pellets so all K
pellets are regularly spaced.

5. Conclusion

We have shown that realistic tongue contours (with errors well

below 0.4 mm) may be predicted from as few as 3–4 landmarks

(optimally located on the tongue) using a nonlinear mapping

learned from ultrasound data. This information may be used to

determine the optimal number and locations of pellets for EMA

and X-ray microbeam technology. Although our dataset was

small and limited to one speaker, the results demonstrate the ap-

proach is much more successful than spline interpolation, and

quantify the extent to which the EMA/X-ray data is a good rep-

resentation of the tongue. Future work will involve adapting the

model to a different speaker for which we have no (or very lit-

tle) data; animating tongue contours for vocal tract visualisation

of EMA/X-ray databases; and augmenting the tongue represen-
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Fig. 7. Optimal location of K landmarks (for K = 2, 3, 4, 5)

depicted on a sample tongue contour (the tip is to the right and

the root to the left). The bottom contour shows the approximate

location of the 3 pellets used in the MOCHA database.

tation in data-driven methods for articulatory speech synthesis

and articulatory inversion. This will improve our understanding

of the limitations of current articulatory databases for articula-

tory inversion, articulatory synthesis and vocal tract visualisa-

tion. The method is also applicable to predicting the 3D shape

from landmarks if 3D ground truth is available.
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